Exceptional service in the national interest

Demonstrating Fuel Magnetization and Laser Heating Tools for Low-Cost Fusion Energy (Part 1)

Daniel B. Sinars
Sandia National Laboratories,
Albuquerque, NM, USA

ARPA-E ALPHA Kickoff Meeting Oct. 14-15, 2015 Santa Fe, NM, USA

Magnetization

Compression

Laser

Heating

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This 2-year, \$4M project is a joint collaboration between Sandia and the University of Rochester

Sandia National Laboratories, Albuquerque, NM

- Daniel Sinars*, Senior Manager, Radiation & Fusion Physics Group
- Kyle Peterson*, Manager, ICF Target Design Department
- John Porter*, Manager, Laser Operations & Engineering
- Matthias Geissel, Principal Member of Technical Staff
- Adam Harvey-Thompson, Akima Infrastructure Services
- Adam Sefkow, Principal Member of Technical Staff
- Stephen Slutz, Distinguished Member of Technical Staff

University of Rochester, Rochester, NY

- Riccardo Betti*, Director, Fusion Science Center
- Mike Campbell*, Deputy Director of Laboratory for Laser Energetics
- Jonathan Davies*, Research Scientist
- Po-Yu Chang, Postdoctoral Associate
- Sean Regan, Group Leader of Omega Experiments
- Dan Barnak, Graduate Student

This project will utilize existing capabilities at both institutions to demonstrate magneto-inertial fusion scaling

Sandia National Laboratories

- 80-TW, 20 MJ Z pulsed power facility
- 1-TW, multi-kJ Z-Backlighter laser facility
- 30 T B-field system (900 kJ stored energy)

Laboratory for Laser Energetics

- 60-beam, 30-TW, 30 kJ,
 OMEGA laser facility
- 4-beam, TW to PW, multi-kJ OMEGA-EP laser facility
- 20 T B-field systems (200 J stored energy)

³

Recent laser-driven spherical capsule implosions* showed higher temperatures (and yields) due to fuel magnetization

- Simple axial field used in a spherical implosion geometry
- Field suppressed electron heat conduction losses along one direction
- The resulting 15% increase in temperature and 30% increase in yield is consistent with estimates for transverse heat loss suppression
- This is an example of success with a target that produced fusion yield without magnetization—can we produce yield in targets that would not produce significant yield otherwise?

This project is centered around the Magnetized Liner to Inertial Fusion (MagLIF) target design for Z

- Inhibits thermal losses from fuel to liner
- May help stabilize liner during compression
- Fusion products magnetized

Laser heated fuel (2 kJ initially; 6-10 kJ planned)

- Initial average fuel temperature 150-200 eV
- Reduces compression requirements $(R_0/R_f \sim 25)$
- Coupling of laser to plasma in an important science issue

Magnetic compression of fuel (~100 kJ into fuel)

- ~70-100 km/s, quasi-adiabatic fuel compression
- Low Aspect liners (R/∆R~6) are robust to hydrodynamic (MRT) instabilities
- Significantly lower pressure/density than ICF

Goal is to demonstrate scaling: $Y(B_{z0}, E_{laser}, I)$ DD equivalent of 100 kJ DT yield possible on Z

This project will use multiple facilities to demonstrate MagLIF scaling & laser heating

A design for laser-driven MagLIF on OMEGA has been developed and will be demonstrated in the next 2 years

Parylene-N Target

Outer diameter: 600 μm D₂ fill density: 1 - 2.1 mg/cc

Preheat temperature: ≥ 100 eV Shell thickness: **30** μm

Compressed length: 600 – 700 μm

- **Experiments in 2015 have established that we can couple the laser to the target** and heat it all the way through to >100 eV
- We have achieved cylindrical compression at the desired implosion velocity, and are now optimizing the axial uniformity and compressed length

This project will benefit from extensive diagnostic capabilities that tell us more than just the yield

Other unique diagnostics (e.g., proton radiography for Bfield measurement at OMEGA)

This project will benefit from expertise in theory and 2D/3D modeling capabilities available to participants

^{*} A.B. Sefkow, S.A. Slutz et al., Phys. Plasmas 21, 072711 (2014); ** J.R. Davies et al.

Our project will demonstrate magneto-inertial fusion in relatively high-density, short-duration plasmas, and study the scaling of magneto-inertial fusion using modeling

Target pre-conditioning experiments

- Needed to understand initial conditions for integrated Z, Omega shots
- Will use Omega, Omega-EP, Z, Z-Backlighter
- Will determine a set of conditions needed to achieve functional fuel pre-conditioning (i.e., laser and magnetic field configurations)

Laser-driven MagLIF experiments on OMEGA

 If successful, will demonstrate our ability to predict and scale the performance of magneto-inertial fusion targets over a wide range of size, time scale, and available energy (e.g., ~1 kJ to ~1 MJ absorbed)

Numerical Modeling & Theory

- Will improve & refine simulation models using data collected
- Will apply benchmarked tools to examine MIF parameter space over a broad range exceeding that of near-term MagLIF experiments on Z

Tech transfer & Outreach activities

Z experiments have demonstrated thermal fusion with >10¹²

2.45 MeV neutrons from a ~70 km/s, 1.5 mg/cm² implosion

- The initial MagLIF experiments on Z within the past 1.5 years demonstrated that there is merit to the idea of magneto-inertial fusion
- Laser heating of a magnetized initial plasma with minimal high-Z mix has been shown to be critical
 - Initial experiments used "unconditioned" beams and thick (>3 μ m) foils and deposition into the gas was lower than expected
 - Low energy deposition and mix is borne out by several different experiments on multiple facilities
 - Simulations suggest a >100 eV initial average plasma temperature (with low losses) would result in an order of magnitude increase in yield (~ 8 eV now?)
- This project will greatly accelerate our progress with high shot rate*:
 - ~100-150 shots/year on Z-Backlighter facility
 - ~10 shots/year using Z-Backlighter shooting into Z (different diagnostics)
 - ~24-30 shots/year on OMEGA-EP [3 shot days/year]
 - ~40-50 shots/year on OMEGA [4 shot days/year]
- Present modeling predicts fusion yields of ~100 kJ (DT) are possible on Z

Achieving energy-relevant yields will require extrapolation from existing facilities, so demonstrating credibility of our modeling tool predictions is important to ARPA-E

S.A. Slutz and R.A. Vesey, Phys Rev Lett (2012); A.B. Sefkow et al., Phys Plasmas (2014).

Questions?

